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PREFACE

The Structures and Materials Panel of AGARD has sponsored a number of activities
concerned with the behaviour of materials at elevated temperatures in gas turbines. These
have covered a number of aspects from laboratory investigations to the practical difficulties

of service maintenance of gas turbine engine parts. This is demonstrated in the Specialists’
Meetings heid by the SMP, namely:—

“Characterisation of Low Cycle High Temperature Fatigue by the Strain Range
Partitioning Method” (Aalborg 1978, AGARD CP-243)

*“Ceramics for Gas Turbine Applications” (Porz-Wahn 1979, AGARD CP-276)

“Maintenance in Service of High Temperature Parts” (Noordwijkerhout 1981,
AGARD CP-317).

In the final discussion of the last Specialists’ Meeting there was a clear indication that
more materials performance data under engine conditions was needed by the user. There was
also a requirement for some basis of damage prediction upon which to build an approach of
damage tolerance design and use of engine components. In response to this the SMP approved
a follow-on activity entitled “Damage Tolerance Concepts for Critical Engine Components”.

One of the early activities of the group involved was to receive a presentation from
Dr-Ir. H.P. van Leeuwen of NLR on “The Application of Fracture Mechanics to the Growth

of Creep Cracks” in London, Spring 1983. [ am pleased to see this significant review published
as an AGARD Report.

D.A.FANNER

Chairman — Sub-Committee on
Damage Tolerance Concepts for Critical
Engine Components

[ .
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SUMMARY

‘“jﬁjlhe literature concerning the application of fracture mechanics to the growth of creep cracks is
s discussed.

. As an introduction it is shown that linear elastic fracture mechanics have been applied successfully
s to the residual strength of brittle materials, crack growth due to stress corrosion and crack growth due to
= fatigue.
AP Next the methods are discussed to account for plasticity.
M Then a survey is made of the attempts to correlate the crack growth rate under creep conditions with
the stress intensity factor, the net section stress, the reference stress, the crack opening displacement
B rate, the contour integral J and the contour integral J*.
;i A few sections are devoted to alternative methods to calculate J and J*.
i A survey is made also of theoretical predictions of the crack growth rate as a function of parameters
- that are considered to be determining. P
K The report ends with a discussion and a few conclusions. <
-
i LIST OF ABBREVIATIONS . 3
2] R
g} ASTM American Society for Testing and Materials R
K A,
»3 ccp Centre Cracked Plate e
& CcCT Centre Cracked Tension B
o CDCB Contoured Double Cantilever Beam *~_¢
.~ R
CN Centre Notch ;
3 L. y
3 CNC Centre Notch Cylindrical oy
* CNP Centre Notched Plate R
\..q
¢ CNRS Circumferentially Notched Round Specimen R
Ny : <
¥ CNT Centre Notch Temsion R
coD Crack Opening Displacement - fh
CT Compact Tension PR
;; CTOA Crack Tip Opening Angle - q
13 CTOD Crack Tip Opening Displacement
~ e
5y DEN Double Edge Notch
o
y DENT Double Edge Notch Tension i
. .
FEM Finite Element Method . ~j
LEFM Linear Elastic Fracture Mechanics AW
o NCH Notched Central Hole S
4 RNB Round Notched Bar ‘
:. scC Stress Corrosion Cracking
!
-q SEN Single Edge Notch
;j SENB Single Edge Notch Bending
. SENT Single Edge Notch Tension
-
- TDCB Tapered Double Cantilever Beam

: WOL Wedge Opening Loading




t.  INTRODUCTION

The last two decades have seen the development of an aircraft design philosophy based on the
principle of damage tolerance. This means that the fact is accepted that the occurrence of cracks or other
forms of damage in the aircraft structure cannot always be prevented.

It is then required that the cracked component can sustain a certain fraction of its design load without
collapse due to unstable crack growth. It is required also that in service the crack will grow so slowly
that it can be detected by periodic inspections before it reaches a catastrophic size. If a crack is
expected in a location which is inaccessible for inspection it will have to grow so slowly that it will not
become catastrophic during the entire design life of the structure. An alternative design measure is to
provide a neighbouring component that will take the load from a failing component without failing itself.
This design philosophy requires calculations leading to prediction of crack growth rates and residual
strength. Fracture mechanics provide the tools for such calculations.

Fracture mechanics have been applied successfully to airframe structures where crack growth is mainly
by fatigue at moderate or normal temperatures.

In recent years the desire has grown to apply principles similar to damage tolerance to aircraft jet
engines. This has raised the question whether fracture mechanics can be applied to crack growth by creep
and fatigue in engine components operating at high temperatures.

A similar problem has arisen with regard to stationary high temperature installations such as
furnaces, chemical reactors and boilers, especially those in electric power plants. Such installations have
been designed typically for a finite life and on the basis of creep rupture strength. Many of such
installations have now reached their design life time. For economic reasons their owners wish to keep these
installations in service. The question is how long this can be done and how safety can be guaranteed. An
important aspect is that in some of these installations cracks have been found and that present require-
ments do not allow cracks.

This has spurred many investigations regarding the applicability of fracture mechanics to crack growth
under creep conditions.

Here the problem is that conventional fracture mechanics are based on linear-elastic stress-strain
relations. Because the used structural materials show a certain measure of plasticity before failure one

was forced to account for plasticity effects.

Many equations in linear elastic fracture mechanics (LEFM), can if necessary by some adaptation, be applied
provided, however, the region where plasticity occurs remains small relative to the length of the crack

and the dimensions of the specimen or the component. Plastic fracture mechanics, for cases where this
condition is not fulfilled, are still under development.

In the creep case one is dealing with an important amount of time-dependent plastic deformation which
renders the applicability of conventiomal fracture mechanics highly doubtful.

In the past 15 years or so several empirical and theoretical studies have been made into the possibility

of applying fracture mechanics to the growth of creep cracks.

Reviews of such studies have been published earlier by Haigh (1), Van Leeuwen (2, 3), Ohji (4), Ellison

and Harper (5), Ashby and Tomkins (6), Pilkington (7), Fu (8), Radhakrishnan and McEvily (9) and by
Sadananda and Shahinian (10).
The present review tries to be more complete and will tieat some more recent literature.

As an introduction the application will be treated of LEFM to the residual strength of brittle materials,
crack growth by stress corrosion and crack growth by fatigue. Next a review will be given of methods to
account for plasticity, largely taken from an article by Eftis and Liebowitz (11). Then a review is
presented of attempts to correlate creep crack growth rate with the stress intensity factor K, the net
section stress o___, the reference stress o_ ., the crack (tip) opening displacement rate v (or §), the
contour integtalnetJ and the contour integral J*. The report ends with conclusions and recommendations.

2. LINEAR ELASTIC FRACTURE MECHANICS

LEFM has found a successful application in the description and the prediction of several types of
crack growth. A condition is that the extent of plastic deformation will remain small. This implies that
the plastic zone at the crack tip will remain small and will remain embedded in the field where deformation
is elastic only. In this way the plastic deformation will have a negligible effect on the stresses in the
elastic field and on the quantities calculated with them.

2.1 Residual Strength

I1f LEFM is applied to a residual strength test on a cracked specimen it is assumed that unstable crack
growth will occur if the stress intensity factor reaches a critical value K . It is then found that K_is
not really a material constant independent of specimen shape and size but ~will depend heavily on spécimen
thickness. See for instance figure 1 taken from Sullivan and Freed (12).

2,2 Stress Corrosion Cracking

In the application of LEFM to SCC it is found that the crack growth rate depends on K in a very

typical way (Fig. 2, Speidel, 13) and shows a region I where %% depends strongly on K, a region Il where
3% is constant (velocity plateau) and a region III where %% again rises rapidly with K. In practice

the relationship between da/dt and K appears to be influenced extensively by such conditions as material
susceptibility, relative humidity, halide concentration, pH-value, electrode potential, temperature,
viscosity of the corrodent, nature of the corrodent (e.g. liquid metal v.s. water).

2.3 Fatigue

The application of LEFM to SCC is possible because there stresses usually remain small. This is
usually also the case with fatigue. In this case the crack growth rate da/dN is determined by the variation




AK of K. The relationship is influenced rather heavily, however, by frequency and enviromment (Fig. 3,

Speidel, 14).

2.4 Conclusion

Although certain relationships have been established between fracture mechanics parameters and
various types of cracking, these relationships are influenced strongly by a number of additonal conditioms
or parameters. If, therefore, a correlation can be found in the case of creep cracking one must be prepared
to accept that also in this case a number of additional parameters can influence the correlation to a large
extent.

3.  PLASTICITY EFFECTS

In many technical materials appreciable plastic deformation can occur before the crack becomes un-
stable. If the plastic zone at the crack tip remains small and remains embedded in the elastic field
certain corrections can be applied to the equations used to calculate the stress intensity factor K.
When plastic deformaticn becomes more extensive, the K factor may lose its validity and one tries to
apply other parameters that can be expected to give a better description of crack tip conditions. Such
parameters are for instance
- the crack (tip) opening displacement, C(T)OD
- the J integral
- the net section stress
These parameters will now be reviewed because they provide suggestions for the treatment of creep cracking
by fracture mechanics methods.

3.1 Effective Crack Length

The value of the K-factor depends essentially on the square root of the crack length a. In the case
of plasticity it can be assumed that the plastic zone at the crack tip is a circle with radius ry where ry
can be calculated as

K2
= B = (3.1)
Y 9%
wvhere B = 1/2n for the plane stress case and B = 1/67 for the plane strain case.
Plasticity is then acccounted for by introduction of an effective crack length

.

a, =a+ry (3.2)

In this way the effect plastic deformation has on the elastic stress field is accounted for in a
approximative manner.

3.2 Energy Dissipation

The K-value is a scaling factor for the elastic stress field at the crack tip that can be represented
as

K 1
%k — . fjk (o) (3.3)

In reality this is the first term of a series expansion with increasing powers of the quantity

-1
(r/a) withn =1, 2, 3, ...

[ )

Higher values of & - 1) can be neglected if r remains sufficiently small relative to a, e.g. for r < 0.05a.
The original fracture mechanics are based on energy considerations however.
A characteristic quantity is the strain energy release rate

¢--4 (3.4)

where U is the potential energy.
For the elastic case G can be calculated as

P dc
G=5% T (3.5)
< Here B is the specimen thickness, C the compliance v/P wherein v is the load line displacement and P the %
’ load.
. It can be shown that for the elastic case G is proportional to Kz. 1
e If the extent of plasticity is so great that the K-factor loses its significance, G may still be a useful
. parameter to describe the material's resistance to cracking. .
“ In thin sheet, where the plastic zone may be larger than the sheet thickness, stable crack growth will @
. occur when the gross section stress ¢ is raised monotonically. The resistance to stable crack growth can be =
) depicted by the R-curve (Fig. 4). P ]
-, If on a specimen with a precrack of length a, the stress ¢ is raised, G will rise in proportion with ¢“ and o
e a. Every stress increase Ao will result in a crack length increase Aa. The locus of the points on the G-lines ’ ]
e corresponding to a certain stress ¢, and the resulting crack length a, forms the R-curve.
L Fracture instability will occur whed the G-line is tangent to the R-clirve because this implies that at 1
[;i constant stress ¢ more energy is released than is needed for crack growth since j
€ 4R (3.6) -0
da ~ da :




Related to this approach is the one by Eftis and Liebowitz (11) who calculate the energy release when the
load-displacement or P-v diagram is non-linear due to crack growth and plasticity (Fig. 5).
They represent the non-linear curve by the equation

n
P P
- ¢ .7
veu® k(H) (3.7)
where M is the initial rigidity.
Through application of

~ 4au
G = - — (3.8)
da "
they arrive at the effective energy release rate G as
~1
v 2nk _ (P\"
G =G {1 + ey (ﬁ) (3.9)

N
Unstable crack growth will occur for a critical energy release rate Gc'

3.3 J-integral

Related to the approach based on G is the one based on the contour integral J, proposed by (Jim) Rice
(Fig. 6)

J = ¢r {wdy ’I‘j :——:ids} (3.10)
W is the strain energy density
€an
W -OJ’ oJkdeJk 3.11)
. is o, , the traction normal to the contour I and u. is the displacement vector.

JJcan be deétermined for the elastic/plastic case through”a numerical finite element calculation or
analytically e.g. using a polar coordinate system around the crack tip.
It has been show that H is path iundependent provided the contour stays away from the crack tip sufficiently.
Proof has been given however, using the so called deformation theory of plasticity which is valid only for
monotonically rising stresses.
It has been shown that J is also a measure of the energy release rate

du

J=- (3.12)

For the elastic case one finds J = G.
J can be determined empirically from a non-linear diagram of load P versus load line displacement v,

see figure 7, (Landes and Begley, 15). It is postulated that further crack growth will occur for a
critical J value Jc'

3.4 Crack (Tip) Opening Displacement

A seemingly different approach is the one based on crack (tip) opening displacement.
The COD can be measured in the load line, or at other distances from the crack tip, using e.g. clip gauges.
By calculation and/or calibration the CTOD can be derived.
It can be calculated using the plastic crack tip model of Dugdale

8cg,a
5 =

2n sec(%-%;) (3.13)

From a quasi-elastic calculation, using a circular plastic zone around the tip of the effective crack
(a +r,), § is found as the displacement at the real crack tip.
The result is

§ = aG/aY (3.14)

where a = 4/n/3 for plane strain and o = 4/m for plane stress.
This shows the relation to the energy dissipation approach since

-l
¢ (oY . c) (3.15)
3.5 Stable Versus Unstable Crack Growth

When plasticity plays a role appreciable stable crack growth can occur prior to failure.
To investigate what parameters would govern or describe this process finite element calculations have been
made in which the behaviour of v, the load line displacement, was forced to vary with a in the manner as
had been determined experimentally.
De Koning (16) found that re-initiation of the crack occurred at critical values J. or § of J and § but
that during stable crack growth the crack tip opening angle (CTOA) remained virtually cofistant .
Shih et al. (17) found that dJ/da remained constant over a short stretch. The so called nominal crack tip
opening angle dé/da and the real CTOA remained constant over a large span of a-values.
They concluded that crack re~initiation could be predxcted on the basis of J or § but that for
continued crack growth CTOA or d&/da had to have a certain value. ¢
Gudas et al. (18) show results indicating that dJ/da remaxns fairly constant for 0.5 . % . 0.8,

They conclude that Paris's tearing modulus (dJ/da). (E/a ) can be a good measure for the onset of
instability.
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3.6 Net Section Stress

When yielding occurs over the larger part of the reduced section it is expected that crack instability
will occur for a critical value of the net section stress 9,

et
4. THE GROWTH OF CREEP CRACKS

If a metal specimen, containing a crack due ‘to prior fatigue stressing for instance, is loaded e.g.
in tension or in bending at elevated temperature, the crack will continue to grow, perhaps after some
incubation period. By measuring and recording the crack length, using the change in electric resistance
or in compliance, a crack growth curve as depicted in figure 8 can be determined. In genera) the crack
growth curve will strongly resemble the conventional creep elongation curve with its typical three regions
with fast, slow and fast growth rates.

In the case of the creep crack growth curve the primary region may be small or absent, the slope in the
secondary region may be shallow or steep, but the basic form will always be there.

We are dealing again with stable crack growth followed by unstable fracture. The phenomenon is determined
more strongly by plasticity, however, as can be seen from the following summary:

- Brittle materials, heavy plate: no stable crack growth

- Ductile materials, thin sheet: stable crack growth at monotonically increasing load.

- Creeping materials: stable crack growth at constant load.

It need not be expected that final failure in the third case will require a different analytical treatment
than that in the second case. It can be expected however that stable crack growth in the third case will
have to be treated differently than that in the second case, as much as stable crack growth in the second
case had to be treated differently from unstable crack growth in the first case.

There is a certain resemblance with

- fatigue: stable crack growth at constant cyclic stress

- stress corrosion: stable crack growth at constant static stress.

5. CORRELATION OF THE CREEP CRACK GROWTH RATE
WITH THE STRESS INTENSITY FACTOR, THE NET
SECTION STRESS AND THE REFERENCE STRESS

As was explained before, the applicability of the K-factor is dependent on some conditions, the most
important perhaps that the extent of plasticity should be relatively small.
It is somewhat naive may be to suppose that K will be applicable to a crack in a creep specimen where time
dependent plastic deformation occurs over the greater part of the net section and perhaps also of the
gross section away from the crack. It will not be very difficult to calculate a X-value in some way and
to make a diagram of da/dt versus K. The question is whether this would be meaningful. For that it is
necessary that under otherwise identical conditions, for different specimen shapes and sizes, for different
crack lengths and gross section stresses, the same da/dt will be found if K is the same. In practice this
results in many disappointments. .
If a diagram of secondary creep rate versus K is made nevertheless, a curve as shown in figure 9 may result.
This is again a sigmoidal curve. One distinguishes a region I where da/dt depends strongly on K, a regiom II
where da/dt depends weakly on K, and a region III where da/dt again rises sharply with K.
In some cases the primary branch may be absent and the secondary branch may be horizontal. In other cases
the secondary branch may be nearly as steep as the primary and the tertiary. Some investigators show only
one branch and than it is difficult to judge which of the three it is.
Note that the crack velocity diagram for creep has some resemblance to those for stress corrosion and
fatigue.
If plasticity is extensive the correlation of da/dt with K can be expected to be bad. One can then attempt
to correlate da/dt with net section stress o . For a cracked specimen loaded partly in bending, net
section stress is not such a meaningful thingeand one prefers to use the reference stress o
It can be defined as

[ =g .EX

ref gross Pc

ref’

(5.1)

where P, is the load at the onset of yielding in the uncracked specimen and P, is the load at the onset of
yieldinz in the cracked specimen.

Many of the older investigations concentrated on the question whether da/dt would correlate well with K and
if so whether it would correlate better with K than with o ¢t °F Sioge

A typical example is the investigation by Ellison and waltB8" (197% see figure 10. Single edge notch flat
specimens have been loaded axially and in bending at a series of initial stresses. It is seen that for the
axially loaded case creep crack growth rates correlate fairly well with the stress intensity factor.

For the bending case there is a large spread however, and plotting da/dt versus K does not reduce the

data to a single curve.

Another example is the investigation by Neate and Siverns (20), figures 11 and 12. A 0.5 Cr-0.5 Mo~0.25 V
steel has been given two different heat treatments, one involving a quench making the steel relatively
trittle in order t- simulate a v !d heat affected some, the other comprising normalizing and tempering.
(orrelation of da, . with K i asonably good. Somewhat unexpectedly the correlation with o is rather
lad, especially fo. .. d:ct : waterial. net

A third example inve® AISL 215 type stainless steel (Fig. 13) tested by Nicholson and Formby (21).

Here the correlation with 7 is better than with K as one would expect for a ductile stainless steel.

As was shown the results soRStimes do live up to expectations and sometimes they don't. Literature in which
correlations of da/dt with K, ¢ and o ¢ vere compared have been compiled and classified as to the result
in table 1. It is seen that tho“sS|ultl 588 rather erratic and unpredictable. Therefore correlations with
either o or K shoulé not be trusted.

Note thal®tin some of the investigations reviewed, the material has been quenched to simulate a welded
condition or prestrained at high temperature to simulate creep damage. This usually leads to a deterioration
of the crack resistance and should be considered when applying crack resistance values to practical cases.
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TABLE 1. CORRELATION OF da/dt WITH K, ¢ and o .
net ref -

ot e

I Good correlation of da/dt with o %ne
1) Nicholson and Formby (21): type 316 stainless steel, solution heat treated, SENT and CNT specimens, 740°C.

2) Neate (22): 0.5Cr-0.5Mo—~0.25V steel, normalized and tempered, SENT specimens, 565 °C

zoref rather, .than anet). .1
3) Neate (23): 0.5Cr-0,5Mo—~0.25V steel, normalized and tempered, SENT and CT specimens, 565 °C
zoref rather than o_ ).

bad correlation with K

net
-4
11 Bad correlation of da/dt with K, o . not considered o
L
1) Robson (24): 0.24 I carbon steel, normalized, SEN and CT type specimens, 450 °C.
2) Ellison and Walton (19): 1Cr-1Mo-V steel, SENT specimens, 565 °C, correlation especially bad in bending. —

3) Haigh (25): Cr-Mo-V cast steel, normalized and tempered, WOL specimens (~ CT), 550 °C. ‘.'-"1
4) Gooch (26): 0.5Cr-0.5M0-0.25 V steel, several quench rates, SENB specimens, 565 °C.
5) Gooch (27): 0.5Cr-0.5Mo-0.25 V steel, various quench rates and tempers, SENB and SENT specimens. -
6) Sadananda and Shahinian (28): Nickel Alloy 718, aged, CT specimens, 650 °C, crack tum. ling. .‘_<

III Good correlation of da/dt with % K not considered
1) Taira and Ohtani (29): 1Cr-1Mo-0. 25 V steel, CNRS and DENT specimens, 6000 °C. R
2) Nicholson (30): type 316 stainless steel, solution heat treated, DENT specimens, 600-850 °C. Tt

IV _sod_correlation of da/dt with o ne t_agd_wit_tl K

1) Neate and Siverns (20): 0.5Cr-0.5Mo-0.25V steel, quenched, SENT specimens, 565 °C.

2) Henshall et al. (31): type 316 stainless steel, solution heat treated, tempered and untempered, -——-1
DENT specimens, 636 °C; 1Cr—-0.5Mo steel, bainite, SENT specimens, 565 °C (cref rather than o_ ). Mg.,

net
3) Lloyd (32): type 316 stainless steel, DENT specimens, 625 °C.

4) Taylor and Batte (33): 1Cr-Mo-V steel, forged, DENT specimens, 550 °C, reinitiation rather than 1
crack growth. "

V Good correlation of da/dt with K, g et_ngt_cgngigeseg_

1) James (34): type 316 stainless steel, CT and CNT specimens, 538 °C. )

2) Thornton (35): forged and cast CrMoV steel, SENB specimens, 550 °C. T

3) Landes and Wei (36): AISI 4340 type steel, CNT and constant K specimens, 20-140 °C. ’

4) Kenyon et al. (37): RR 58 aluminium alloy, contoured DCB specimens (constant K), 100-200 °C. .
5) Pilkington et al. (38): 0.5Cr-0.5Mo-0.25V steel, vacuum melted, SENB specimens, 550 °C. .

6) Floreen (39): various nickel alloys, CT specimens, 500-760 °C.
7) Kaufman et al. (40): 2219-T851 aluminium alloy, CT specimens, 100-177 °C.

8) Worswick and Pilkington (41): 0.5Cr-0.5Mo-0.25V steel, ferritic, prestrained at 666 °C, SENB specimens,
550 °C.

9) Sadananda and Shahinian (28): type 718 nickel alloy, aged, CT specimens, 540 °C, Udimet 700, aged,
CT specimens, 850 °C.

VI Bad correlation of da/dt with %ne K not considered

No publications.

VIT Bad correlation of da/dt with o ., good correlation with K L
1) Siverns and Price (42): 2.250r-|Mo steel, SENT specimens, 565 °C. J
2) Neate and Siverns (20): 2,25Cr-iMo steel, quenched for weld simulation, SENT specimens, 565 °C. s
3) Koterazawa and Iwata (43): type 304 stainless steel, CNRS and DENT specimens, 650 °C. . . 1
4) Neate (22): 0.5Cr-0.5Mo~0.25V, quenched for weld simulation, SENT specimens, 565 °C. *’1

6. CORRELATION OF THE CREEP CRACK GROWTH RATE WITH THE
CRACK (TIP) OPENING DISPLACEMENT RATE

For a cracked specimen as shown in figure 7, the displacement in the load line v is related to load P
and compliance C as follows

S

R

v=C,P (6.1) )
Differentiation with respect to time gives

1’
1
4 d . 1
v o 48, dC da (6.2) J

de dt da ° dt
For constant load - @
dv dc  da f

E"P.E.H (6.3)
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For a so-called constant K specimen, %g is constant. It follows that only for a constant K specimen in the
elastic case at constant load there will be a straight proportionality between %% and g%.
If these three conditions are not fulfilled a more general relationship
m

da dv

da _ . (4w 6.4

ac - H (dt) (6.4)

may still hold.

1t is somewhat surprising therefore that Haigh (1) analysing the results of Robson (24) for a creeping CT
specimen finds a straight proportionality nevertheless (Fig. 14). As shown in figures 15 and 16 the time
dependence of COD and crack length a can be quite different. A relation as above will have only a limited
validity.

For a materiel behaviour as depicted in figure 16 it may be stated that for the onset of crack growth v
must first reach a critical value Vs and that the relationship will than hold for da/dt and

d

ra (v - vc) (6.5)

If the relationship does not hold this may show up as a non-eliminated dependence on load P .cig. 17).
Radhakrishnan and McEvily (9, 44) found that in that case the data points could be made to fall on one
da
dat

P.\a
dvy/ 0
(E)(?‘) (6.6)
They claim a theoretical background for the relationship
1
P \a
d dv 0 8

where a and 6 are functions of temperature T (45). Sometimes, as for Ti-6A1-2Sn-4Zr-2Mo-0.18i, a will be
very small and even practically zero (46).

straight line by plotting versus the parameter

a2

While v and dv/dt are directly related to the overall energy dissipation, a more mechanism oriented
approach makes use of the crack tip opening displacement §. The trouble is that § is much more difficult to
determine than v.

Nicholson (30, 47) and Henshall et al. (31) determined § on metallographic specimens made after the
cracking test. They correlated § with v and then determined %% from the time record of v.

The more usual method is to assume that there is a plastic hinge at a certain spot in the unbroken ligament
b and that § will be a certain fraction of v.

Haigh (25) found the relationship

0.8
da ds
it ° 2. (E) (6.8)

Other investigators such as Pilkington et al. (38), Nicholson and Formby (21), Gooch et al. (26, 48) and
Henshall et al. (31) have found relations of the type

1

(a-ay = 5 (6 -8y (6.9)
where w is similar to the crack tip opening angle.
The question is, given a relationship between %% and g% or %%, what the practical use of it is. There

are two needs:

- for a high temperature installation one would like to determine %% from a more easy to measure quantity or
- one would like to predict %% from a more easy to calculate quantity.
The conclusion is that the relationship will be of little practical use because for a structure %% and %%

are neither more easy to measure nor more easy to calculate than %% itself.
7.  CORRELATION OF THE CREEP CRACK GROWTH RATE WITH THE
J-INTEGRAL OR THE RELATED PARAMETER J*

In section 3.3 the J-integral has been defined already and a method was indicated to determine J
experimentally (Fig. 7).
With regard to creep cracking Landes and Begley (153) have applied a parameter that strongly resembles the
J-integral. They have indicated it as C* whereas other authors use the symbol J. To avoid confusion only
the symbol J* will be used in the present paper. The integral in question is defined as (see Fig. 18)

aua,
J* = 4}1. {w*dy - R‘]‘ ds} (7.1

where €

Wk = I
0

mn

ojkdgjk (7.2)

It appears that J* can be obtained from J by substituting strain rates for strains and displacement rates
for displacements. It is clear that in general J* ¥ dJ/dt and that hence the indication J is misleading.
Like J, J* can be calculated by finite element analysis or from analytical stress-strain relations.

For J an empirical determination was possible on account of the relation
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Likewise J* can be determined from

du*
MR ol da { I Pdv} (7.4)
Landes and Begley determined J* from cracking tests at constant displacement rate V. They processed their
test data as shown in figure 19, Diagrams are produced in the following sequence

- Load and crack length as a function of time

- crack growth rate as a function of crack length at constant displacement rate

- load as a function of crack length at constant displacement rate

- load as a function of displacement rate at constant crack length

~ energy rate U* as a function of crack length at constant displacement rate

- energy rate derivative J* as a function of displacement rate (at constant crack length)

- crack growth rate (at a certain displacement rate and crack length) as a function of J*. -
Sadananda and Shahinian (49) have developed a method to determine both J and J* from the results of creep B
cracking tests at a series of constant loads P.. J

Their schemes are shown in figure 20 which is “self-explanatory.
Many authors have used approximate expressions from which J and J* are more easy to decermine. These will : _
be discussed later. ) ’

The question posed now is whether there is an unambiguous relation between da/dt and J or J*, i.e. a @
. relation that will hold even for different geometries and sizes of specimens, different load levels and - T
o initial crack lengths etc. Only in that case will one be able in principle to accurately predict da/dt from ]
. J or J*, PR
- Landes and Begley (15) testing CCP (=CNT) specimens of the FeNiCrMo alloy Discalloy at 647 °C found a single o ]

- relation between da/dt and J* if the same specimen was tested either at a single or at a series of dis-

: placement rates V. If, however, they tested CT specimens rather than CCP they found the curve to be offset
relative to the former (Fig. 21). The correlation was better, however, than with K or nominal stress

(= reference stress).

Nikbin, Webster and Furner (50) tested the aluminium alloy RR58 at 150 °C and steel type 0.5Cr-0.5Mo-0.25V
at 565 °C., They used contoured DCB specimens which give a constant K at constant load P. They found that
da/dt was not constant. If, however, they adjusted P repeatedly to arrive at a comstant J* they found that
da/dt was constant for a large interval of crack lengths, i.e. excluding small primary and a tertiary
regions,

L Harper and Ellison (51) tested 1CrMoV steel at 565 °C. They uséd SENB and CT specimens. The correlation

of da/dt with J* was quite good at high values of these quan:iities. Curves for constant bending moment
were fanning out however at low values, giving lower da/dt values at higher applied moments. The authors

. ascribed it to the effect of primary creep.

. Sadananda _and Shahinian (49) tested nickel alloy 718 at 538, 649 and 760 °C using CT specimens. They

found that for a series of applied loads P, the crack growth rate correlated rather well with both J and

f J* and rather badly with both stress intensity factor K and nominal or reference stress )
. P11k1ngton and Worswick (52) continuing work reported in (41) tested 0.5Cr-0.5Mo-0.25V at"649 °C using .
‘o SENB specimens. The material had been prestrained plastically 0.26 resp. 0.58 % at 666 °C to introduce L
", cavitation damage. For different applied loads they found that da/dt correlated rather well with dé/dt, e
and with quantities J*(¥) and J*(8) defined as
” N I .y P dé
e * 2 - —_— * = — —_—
; J*(¥) B2 ° a9t and J*(§) B2 © dc (7.5, 7.6)
o Earlier they had reported good correlation with log K but had found distinct effects of primary creep
~ and prestraining. This no longer showed up in their newer plots. This will be because cavitation not only
:” increases :t but also %% and %%, and the same may be true for primary creep.
Branco and Radon (53) have continued the work of Kenyon et al. (37) trying to correlate da/dt not with ¥
" but with J. They did find a correlation but did not report whether this was any better than with K, )
7' %het ©F J*, They introduce the relation e
- da _ Y Y
. ac c.J .70 R
& where C and J are strongly dependent on temperature T. Since the relations with T involved are not <
by monotonic the validity of the equation is doubtful,
Saxena (54) tested annealed 304 type stainless steel at temperatures between 538 and 705 °C. He "‘**!‘:
Lo applied CCT and CT specimens using constant displacement rates Vv that were sometimes varied in a stepwise o
o manner. The correlation of da/dt with J* was rather good but deviations occurred for very long cracks in s
- the CCT specimens. .
In Japan very comprehensive investigations have been made to determine the validity of J* as a o
governing parameter for creep crack growth. . ~'j
Koterazawa and Mori (55, 56 and Fig. 22) tested type 304 stainless steel at 650 °C in air. They used three -
. different double edge notch specimens and one central notch specimen. -
s, The material came from three heats (A, B and C) which was accounted for in the sp~cimen designation, . K
" e.g. DEN 2C. They approximated J* as : 9
- 1
= dv 1
- X = ey .
. I* = Onet * Tt (7.8) ]
" S
The crack growth rate appeared to correlate rather well with J* (Fig. 22). The correlation with K was quite R
bad, the one with ¢ net W48 much better, and better still if a was divided by w tu eliminate a size effect '!E
- (Fig. 23). .
", Ohji (4) and Ohji et al. (57) tested type 304 stainless steel at 650 °C using a large number of specimens




of various sizes and shapes. Figures 24 and 25 show that the correlation of da/dt with J* was superior
to those with K and 0 . This is quite obvious also for some added results for CT specimens.
In (57) results are p?SSented also for circumferentially notched round specimens at three diameters.
Results have been added of tests on single and double edge notch specimens as well as central notch
specimens.
In a diagram of da/dt versus J* all results fall in a relatively narrow scatter band.
Taira, Ohtani and Kitamura (58) have done cumprehensive tests on 0.16 Z carbon steel at 400 and 500 °C in
alr, at 400 °C in vacuum, on type 304 stainless steel at 650 °C in air and in vacuum, on type 316 stainless
steel at 600 and 650 °C in air.
They used three types of specimens, each in three different sizes (Large, Medium and Small) i.e.
- hollow cylindrical specimens with a local through crack: CNC-L, CNC-M, CNC-S.
- solid cylindrical specimens with a circumferential notch: RNB-L, RNB-M, RNB-S,
- flat plate specimens with a central notch: CNP-L, CNP-M, CNP-S.

dv
et * dt’
As figure 26 shows, the J* integral approach can cope quite well and much better than the %
with differences in stress level and specimen size and shape.

J* was again approximated as %

et approach

An investigation similar to those conducted in Japan was carried out in Great Britain by Christian
et al. (59). These authors tested 0.5CrMoV steel and 1CrMoV steel at 565 °C using CT, SENB and DCB type
specimens. For these different geometries they tried to correlate the crack growth rate with K, ¢ and J*.
Correlations with J* were more satisfactory throughout. The diagrams they have produced closely resemble
those by the Japanese authors shown in figures 24 and 25, meaning that in the diagram of da/dt versus J*
there was still quite a bit of spread although it was less than with the other parameters.
Seemingly alarming results in this context have been presented by Donath et al. (60). These authors tested
the nickel-base superalloy IN 100 at 732 °C using two different specimen types., The first one was the
common CT specimen but the second a closed ring tested in tension and cracked from the inner side at
locations 90° away from the points of load application. A range of thicknesses was used for both specimen
types. They evaluated the stress intensity factor K, net section stress 9% and the contour-integral J*
as correlating parameters describing crack growth. A special feature of their investigation was that
cracking occurred at increasing K in the case of the CT specimens and at practically constant K in the case
of the ring specimens. They applied a scheme like that in figure 20 to determine J* from the test results.
They encountered a problem already encountered by other authors (e.g. Worswick and Pilkingtom, 41) in that,
due to primary creep effects, crack rates were high initially, gradually decreased to a minimum and then
increased again at increasing crack length or remained constant. This means that in the da/dt versus K
diagram a V-shaped or root-sign-shaped curve (Fig. 28 top) is obtained rather than the sigmoidal one
sketched in figure 9.
Barring the initial downward branches Donath et al. found good correlations in spite of thickness
variations of da/dt with all three parameters K, o ¢ and J* (Fig. 27). The situation was different for the
ring-shaped specimen, however. ne
In the da/dt versus K plot they obtained a series of parallel vertical lines corresponding to the various
initial K-values (Fig. 28). The thickness effect was negligible. Since during each test K was practically
constant, each line depicted nothing but the decreasing crack growth rates due to primary creep. This
situation really is not alarming since the bottom ends of the lines lay fairly close to the da/dt versus K
curve derived for CT specimens. They considered the o approach useless for the ring specimen, but then
it ought to be possible to define a reference stress O ¢ EVen for this geometry. They claim the J*
approach to be useless too for the ring specimen because 5 the decreasing crack growth rate at increasing
crack length. Apparently they have not realized that the J* approach should be restricted to secondary
creep and crack growth rates and excludes the primary ones.
All in all the impression is gained that the J* integral holds better promise as a governing parameter than

Koro or g__., although the situation is still not ideal.
net ref

One deterrent to working with J* is the laborious way in which it has to be determined if one strives for
greater accuracy than with the approximations used e.g. by the Japanese authors. Fortunately several
alternative methods are available for the quantitative determination of both J and J*. These will be
discussed in the next sectioms.

8.  ALTERNATIVE EMPIRICAL DETERMINATION OF J AND J*

In figures 7 and 20 methods have been shown to determine J from a series of load-displacement diagrams.
Rice and other authors have developed methods to determine J from one single load-displacement diagram,
i.e. from one test.
In principle the same methods can be used for J* working with a diagram of load versus displacement rate,
but it would require more than one test to obtain a load-displacement rate diagram.
J has been related to the energy dissipation as

13U
J 3 33 (8.1)

where B is specimen thickness and U is the area below the load displacement curve (Fig. 29, A and B).
Now

v P
U= [pPdv=Pv-[viP=pPv-1 (8.2)
0 0

It follows that:

1V ap
g1 (- _) dv (8.3)
B 0 3a v
and
Jei [P(ﬂ) P (8.4)
B 0 da P

It can be shown that the latter two integrals can be build up from elementary areas of the P-v diagram




such as shown in figure 29C.
According to Rice (61) it has advantages to split up v in two components.

Either
Veot = Vnoer ¥ Ver (8.5)
or
- 8.
Veor " Ver * Yp1 (8.6)

In the first case v has been split up in a part that would occur in the absence of a crack and in a part
that is contributed by the crack.

In the second case v has been split up in elastic and plastic contributions.

For a flat double edge crack specimen, where the unbroken ligament measures b, loaded by a force per unit
thickness P, it can be shown that vpl should have the form

P
Vp1 = P “(E) (8.7)
where H is an unknown function of (P/b).
1t can be derived, however, that

P v 1
J=J, 0] (- —P_ab )dP (8.8)

It follows that

'E;g'l' ’E (‘) H(b) %{( 1)b_vp1} (8.9)

Moreover, Jel is equal to the elastic strain energy release rate G = KZ/E. Partial integration leads to
1 “pl
- - - . 8.10
J=G+5 {201 Pdv ) Pvpl} ( )

Now the quantities between parentheses can be identified as elementary areas in figure 29C.

vpl nocr is usually neglected.
’

It is seen that

l’VPI ~ P"pl.cr = Upl,cr * Upl,cr (8.11)
and that
Vpl _
OI Pdvpl B Upl.cr - Pvpl,cr - Upl,cr (8.12)
Hence
1 -
Jeg+d {upl o upl,cr} .13

The same results holds for a plate with a central crack.
Rice et al have made similar analyses, leading to similar but different expressions for a circumferentially
notched round specimen, for a cracked three-point bend specimen and for a compact temsion specimen.
In the last case there is found
v
cr
2 2 2
i f Pdv .y F{Utot Unocr}”futot' (8.14)

These and other analyses have been reviewed by Keller and Munz (62).

Kanazawa et al. have attempted to derive more accurate expressions for the three-point bend specimen and

the compact tension specimen.
Merkle and Corten have derived a more complicated and supposedly more accurate expression again for the

compact tension specimen.

In a more recent publication Clarke and Landes (63) have simplified the Merkle and Corten analysis for the
compact tension specimen.
They arrived at the expression

1 +a 2Utot

Jel 2 __IOF (8.15)
1+ az Bb

Here a is a rather complex expression in crack length a and ligament b. However, the authors present an
approximation obtained by curve fitting

1o o4 0.260 (1 - %) (8.16)
1 +a

Rice et al. (61) have derived also equations with which J can be calculated from one single point on the

P-v curve. The accuracy is doubtful however, and the result may serve only as a quick estimate.

9.  ANALYTICAL DETERMINATION OF J AND J* USING
NON-LINEAR STRESS~STRAIN RELATIONS

Rice and Hutchinson and several of their co-workers have calcuiated stresses and strains around the




tip of a stationary crack on the basis of a quasi-plastic, non-linear elastic relation between stress and

strain X
N o \B T A

g . (5—) or %— =a (;—) (9.1) s

% \%o 0 () ,;_-#

and accounting for tri-axiality by means of the Von Mises effective stress _ _Lj
02 = % $.. 8., (9.2) N

1} 1] A

where Sij are the deviatoric stresses.

By working with polar coordinates around the crack tip, the J-integral can be calculated in a straight-

forward manner by integrating along a circular path.
It should be noted that in these analyses so-called deformation theory of plasticity has been used,

which makes the results valid only for monotonically increasing stresses. __;__

By replacing the above stress—strain relationship by the so~called Norton law e L
3 a \"
g (__) 9.3)
€ o

0 0

the J*—integral can be calculated in an identical way by making use of the elastic analogue, although the
equations have been derived for a non-growing crack.

The publications with which it all started are Rice and Rosengren (64) and Hutchinson (65, 66).

Hilton and Hutchinson (67) present the results by introducing plastic stress and strain intensity factors

1+m
oij Kq . r . cwij(e) (9.4)
-0 .
1+m :
ij - K .r . ewij(e) (9.5)

where l(0 and KE are directly related to the elastic stress intensity factor

2
K, = cm(KeI//?)'*m (9.6)
m
K = (Kc) 1 (9.7)
RN
and cn = (I—> (9.8)

Im is a rather complicated integral tabulated by Hutchinson (66).

The authors have applied the analysis to a variety of specimen shapes and for the cases of plane strain as
well as plane stress..

Goldman and Hutchinson (68) write

J = agpe K K I (9.9)

The analysis is applied to a flat strip of width 2w and a central crack 2a, loaded in plane strain by a
stress o= at infinity. They also calculate the COD A in the axis of symmetry. The results are presented
as functions of % and m and they are normalized with respect to the parameters from the stress-strain

relation, crack length and applied stress o» or strain ew,
The equations are as follows

- =\ 14m/m 1+m/m o\ 14m
e ) ™ e R ) )
0
m
A= Au(s,m){ZCOa E;} = AN(%,m){Zeoaa ;z (;z gg) } (9.11)
J is normalized also with respect to A
1/m t+m/m
- a -1/m w A
J JNA(W’“’){(l UOCOS(V - a) (2503) } (9.12)

Goldman and Hutchinson have calculated also the load line displacement v, and have split it up as

ve v _+v where va = 2he~ and 2h is the strip length.

cr nocr ocr
The results are presented as

Ver " Veen * 8 (9.13)

The quantities JN and AN appear to depend strongly on %. Therefore they are normalized further with respect




to a and w.
The following forms have been chosen

sl N oot ) () T} eSS (D) B YT e
b = b Bef2epa(c ) £} - Bo){zeorelcs) £ (2 =} (9.15)

The numerical results are presented in table 2.
Shih and Hutchinson (69) have continued the work. Thev consider a flat strip with central crack in plane
stress. They normalize their results with respect to load P per unit thickness and a reference value Po

J = 31(%,m){uoocoa(l - %)(%E)N*i} (9.16)
A= gz(s,m){aeoa(ga)m} (9.17)
Ve ™ 33(%,m){usoa(§a)m} (9.18)

P o
Note that P 2woe and that P—o- = m (9.19, 9.20)

Numerical values are given in table 3. a
The results in their present form do not allow interpolation for m > 10 and to the limit values Pl 0 and

22, aAn adapted way of normalizing is suggested by Amazigo's exact solution for the anti-plane shear

fase. This leads to the equation

G(%-m) - ( -m)[ "“_’E'Ei; : ;)(- 1) %] (9.21)

The result is that G(—,m) varies far less strongly Ulth = and m than gl(—,m) and thereby allows extra-
polation.

Shih and Hutchinson state that the calculations presented so far are good approximations for the case of
"large scale ylelding" where the contributions from elasticity can be be neglected.

For the elastic-plastic case they propose to add the linear elastic to the non-linear elastic solution.
The linear elastic solution is of course a special case of the non-linear elastic one.

Symbolically

J=J(a = a,m= 1) + J(a,m) (9.22)
Note that they apply the Irwin correction in the elastic case, i.e. a, =a+rg.
In the present notation
r 2
Y 1 m =1 w=-a a P
a— ﬂ ‘m+ 1 a . g1(;”)(?6) (9-23)
This leads to the following equations
a 2 mt1
J e P a P
seal1 -8 “"%(T"XPT,) * “51(?‘")(?5) (9.24)
o%o0 w
m
B e ) 2 2 o )% (9.25)
e o) b onloE) -
€08 2\w PO 2\w Po
v a m
cr e P a P
— = y.g —_'1) = + ag (—'m)(—) (9.26)
€93 Nw Po Nw Po
Here:
a,=a+r, for Pz PO 9.27)
a = (a ) for P > P (9.28)
e e 0
P=P
0 2
-1 (&
o= I (9.29)
Y 2tm 1 \o
0
a w -
y =2 ¥-a (9.30)
a v=-oa,

Results of calculations using these equations are reported to agree well with results of FEM calculations.
Shih and Hutchinson (69) have considered also the single edge crack strip loaded in bending in the plane




strain condition. The width of the uncracked ligament is b = w - a,
For reasons of brevity only the equations for the elastic-plastic case are presented here.

2 m+1
J 3 (% WM a \/M
e " ¥ “1(7-‘)("—0) * °h|(;’“)(q) 9-31)
A 2 % 2e M a M \®
i AER)) Wt °hz(;"“)('%) 9.32)
] a m
cr 2 e M a M
St ) (52)(8) 0,39
agg 3\w HO 3\w Ho

Note that 6 _ is the contribution of the crack to the relative rotation of the ends of the strip.
Some results of a FEM analysis for " 0.5 are presented below.

m=1 m= 2 m=3 m=35 m=7 m= 10
h‘ 1,104 0,957 0,851 0,717 0,653 0,551
h2 5,129 3,640 2,947 2,255 1,953 1,606
h3 2,749, 2,359 2,032 1,590 1,373 1,124

Also in this case there was good agreement between results of analytical and of FEM calculations.

Kumar and Shih (70) have applied the Shih and Hutchinson analysis to the creeping CT specimen in plane
stress and 1n plane strain.
They present the equations

J*=h (2 n){Bo ¢ b(f—)n+1} (9.34)
1\w’ 070 Po °
e
A= hz(%,n){ﬁéoa(ga) } (9.35)

- h3(§,n){séoa(§a)n} (9.36)

Here:

Po = 1,455 nboo (plane strain) (9.37)

Py = 1,072 nbco (plane stress) (9.38)

n e @) o)) - ) (9.3

Results of their calculations are presented in tables 4 and 5. In another publication (71) the authors give
the same tables but then relating to time independent plastic deformation. In the latter publication they
also treat the elastic-plastic case in the way discussed before.

An interesting question is whether values for J and J* calculated from the above analyses agree with
values determined from P-v diagrams or P-v diagrams.
Saxena (54) has compared the results from both techniques using creep law parameters reported in the

literature. He found discrepancies between the derived J* values to range from 8 to 40 X, which is not bad

at all, considering the many possible sources of error.
10. VARIOUS OTHER WAYS TO CALCULATE J AND J*
Nikbin, Webster and Turner (50) have calculated J and J* for a Contoured Double Cantilever Beam

specimen.
They assume the non-linear stress-strain relation

m
S E . a(g—) (10.1)
0

Webster has shown that for a material that obeys this law J can be calculated as

P dv
J = -B_n—(m_’TT - da (10.2)

dv
da

-m.
Jaegog D ran s )P (ap)™!
Bn(m + 1) ° 2mB * (h/2)2m*1

The quantity is calculated for a cantilever beam of length a and the final result is

J (10.3)

Here B and B_ are the nominal thickness and the local thickness in the side groov. and h is the local beam
height .
For a material that obeys Norton's law
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o n
- s(—) (10.4)
0 %

there is found similarly

v - n
2(BE o, ){(Zn . 1)} (a)™!

(10.5)
B+ ZnB (h/2)2n+1

Jk =

These equations will not be very accurate. Similar calculations have been made for stress corrosion
specimens strained elastically and important errors were found to result from ignoring the deformation by
shear and the lack of rigidity at the "clamped" cross section at the crack tip.

Branco and Radon (53) have refined the above analysis by considering elastic and creep deformation in both
bending and shear. They also account for the crack tip influence by adding an extra elastic deformation in
bending calculated by assuming that the beam is clamped at a distance { b from the crack tip inside the
ligament b. .

Nikbin et al. (72) give an approximate solution for J* starting with the equation

I* - E;TEEI‘TY g% (10.6)
They assume that

vel.a". g® (10.7)
so that

%% =1 % (10.8)
and thus

gk ':r%&'ri—n (10.9)

Harper and Ellison (51) calculate J* using a method based on the reference stress concept. They assume that

during creep the stress distribution is the same as at limit load. This enables then to calculate the
quantity U* (see section 7), which after differentation with respect to a gives

n R 1 d
I* = B [u . E?;7;$] (10.10)

For the usual large values of n this approximates to

Pv |1 du
A - |2
J Bw [U . m] (10.11)
For bend specimens there is found similarly
Mo [1 du
* » o |1
J Bw v ° dia?ws] (10.12)

Here u is the ratio of the yield load for a cracked specimen to that for an uncracked specimen. Values
of u as a function of (a/w) have been compiled for a variety of specimens by CEGB in the U.K.

Koterazawa and Mori (55) start with an equation for J* analgous to one for J used by Rice (section 8)

1 Foav
kX = o —

3 oI 2a &F (10.13)
In further analogy they write for a double edge crack specimen

v = bf(P/Bb) (10.14)
and on the basis of Norton's law:

v = Cb(P/BbL)" (10.15)

where C is a constant.

A N ]

; L S




LRI T S T N ST T, ST T T

T TR TR T TR TFT 2T eaTrT a T T W WTR W R e e T, Ty T, R ® R R e T e T e T T T e

15
From the first equation they find
1 P [V
Jh = - (—) (10.‘6)
n+ 1B\ P=const.
and finally
x 2D~ 1PV .
J n+ 1 Bb (10.17)
For large n this reduces to
PV
X = .
J b (10.18)
This equation holds also for a centre crack flat specimen.
Similar equations have been derived, for a circumferentially notched round specimen
I* = Pv/nr? (10.19)
(where 2r is the diameter of the ligament) and for a compact tension specimen
2PV
R - —— .
T B (10.20)
Taria et al (58) use similar equations developed by Ohji.
For the centre crack flat specimen they write
201 A
J e cnet (10.21)
and for the circumferentially notched round one
2n - 1 M
{ I Pt . .
I* = Zn 71 %net (10.22)
Here A is the COD rate at the axis of symmetry in the first case, and the COD rate at the outer surface
in the second case.
Musicco et al. (73) have compared various different methods to determine J*. These include the
Hutchinson approach leading to an equation of the form
n+1 o
Jk=A ,a. (2:) . J (E,n) (10.23) T
n % w S

The Landes and Begley graphical method based on

J* = - # (10.24) S

- a ]
o the Ohji et al. simplified equation (see also eq. 10.17) j
. J
", * = P G K
> = J g(n) B—(‘-"_—ayv (10.25)
:; the Harper and Ellison formula (see also eq. 10.10) N
F.'_' R
" I* = n(a) =0 (10.26) X
b " -
}. , s . 3 4
and an equation derived by Musicco and Bernasconi :g
o , -
- J* =gl . o5 . 8 (10.27) "
-4 a
" o
. They applied these to CT specimens of 304 type stainless steel tested at 550 °C in argon. They observed a J
2 fair agreement for the various formulae and with test results reported by Saxena.
11. THEORETICAL PREDICTIONS OF THE CRACK PROPAGATION RATE q

Various suthors have derived equations relating the crack propagation rate to a parameter such as K,




e,

e A

RIS T

B

16

G, o or J*.

TﬁeageSnaIysea do not give proof that the parameter in question really determines the
rate. Often assumptions are made that lead to the result envisaged.

For the sake of completeness the formulae will be presented. For their derivation the
to the original publications.

Landes and Wei (36) start with Krafft's ligament model and apply equations derived by
Hutchinson (section 9). They arrive at the formula

K .2 N+1 2N,
da . c N K N+1
T Emin{ /P} . (0,75 NEY) (N + 1) . [I - (E—)N ]

o,vm c
Y

Here K is the critical stress intensity factor and émin is the secondary creep rate

distange dT from the crack tip.
dT = { } (0,75 Ne)
oy Y
oy’"

crack propagation
reader is referred

Rice, Rosengren and

(t1.1)

in a point at a

(11.2)

Taira and Ohtani (29) have made a phenomenological analysis involving grain boundary creep rate, crack
nucleation rate and fracture strain, and a typical length p* measured from the crack tip.

The result is

da 1 p¥ *a b
— W - g
ac bgbcicz(p*) OI o dx

c, and a are constants.

Here b 2 gb

Sb' ‘311

(11.3)

Barnby (74, 75) applies Hoff's elastic analogue and Norton's law to calculate stresses near the
crack tip. He assumes the crack propagation rate to be proportional with the creep rate at a characteristic

distance from the crack tip. He arrives at the formulae

(11.4)

(11.5)

o n
da _ s'( net)
dt 0 %
lm
gi_e,(m—t 2K" }(w_a)z
dt 0\ 2nm 00(2"?0,5
Here 56 is an empirical constant and K" is a stress intensity factor under creep conditioms.

Barnby and Nicholson (76) use Neuber's rule in addition to Hoff's elastic analogue and Norton's law

to calculate stresses. They take the crack propagation rate to be proportional to the
an element of length L orthogonal to the crack and at a distance dc from the critical
the result

deformation rate of
tip. This leads to

2n_
da (") n+1
R

(EBanc)o’5

(11.6)

Ohji (4) and Kubo et al. (77) consider a creep crack loaded in mode III (anti-plane shear). They calculate
shear stresses using equations by Hutchinson et al. and Norton's law, and they introduce Kachanov's damage

parameter

h=A.T

Th: crack
crack tip
The final
law.

b/(n

+ 1) > 1

Here [ is

b/(n

concept by writing the damage accumulation rate as
b

(1.7

is assumed to grow in a stepwise manner over a length p each time the accumulated damage at the

reaches a critical value.
result depends strongly on the relative values of the exponent b and n the exponent in Norton's

n b b

b
— 1= — —
T n+1 n+1 n+1
da 2n 0 b
q A{«n+1‘§0—} -4(“‘)-0 - Gn

Riemann's zeta function.
+ 1) =1
n
da _ .20 l m.(_a_.i J*
dt S TCE DI ?0 ‘ [ :

b/(n

+1) <1

- >>
a-a, p

b b

n — -

1 }n+1 n+i

da _ b _ b 2n 0 -
oA F(n - ') . F(i 5_7_7) . {;7;—7—77 ;5— * (a ao)

- >>
a-a [

(11.8)

(11.9)

n
(J*) (11.10)
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Here I' is the gamma function.
Freeman (78) calculates the crack propagation rate as a function of the reference stress defined as

[+ -t
ref uBsw

(11.11)

where 1 is the usual ratio of yield loads and where B, and w are specimen thickness and width.
For the single edge crack tension specimen (SENT)

a 2
u.(]-;) (1‘.12)

Experimentally it was found that et varies with time according to the equation

Pe,_ -t) =2 (11.13)

Oref RO

Here t__ is the rupture time associated with the initial value of o and is related to rupture stress o

RO ref R
according to the empirical formula:
P -
op - tg =2 (11.14)
The result is
da_ 1 W0 %0 (p-1)s2 (11.15)
dt  2p B O.SZ ref
s
For the compact tension gpecimen there is found similarly:
da 1 W03, 903 (2p-1)/2 (11.16)
dt 1.15p B 0.5Z ref
s
Using cuncepts from the reference stress method, Freeman relates creep and elastic CODs of the SENT
specimen to creep and elastic strains of a creep specitwn.
Using the elastic analogue and Norton's law he then calculates the creep COD rate as a function of
reference stress
B
. N n-1
v, P . C(a/w) . E; © O (11.17)
Here C(a/w) is the non-dimensional compliance and BN is the Norton law constant
v
C(a/w) = CEB_ = 5 . EB_ _ (11.18)
Crack propagation rate can now be related to creep COD rate for the SENT specimen as
2p-1
E =1—w0.5P0.5 [ BSVC ]Zn-z (11.19)
t 2p BSO.SZ By - P . c(a/w)
and for the CT specimen as:
2p-1
da _ 1 w0'5P0'5 [ BV, ]Zn-z (11.20)
dt  1.15p Bs0.5Z By . P. c{a/w)
Radhakrishnan et al. (46) treat the single edge crack bend specimen and relate the incremental COD to
the increment of the non-dimensional crack length X = (a/w) as
m
d§ = Ak . ctip . dA (11.21)

where A and k are constants.

They than calculate stresses near the crack tip by taking four terms instead of the usual first one of the
LEFM series expansion of stress as a function of distance to the crack tip and the distance from the crack
tip to the neutral axis. Bending moment and load P are introduced through the equilibrium equation. This
leads to the equation

2+ 1- o

~(p 1 - 2n m 2n
dé = A{ZE(' + A)( 3 ) (GF)} (dx) (11.22)

Here n is the expon:nt from Norton's law and (GF) is an expression containing gamma functions of arguments




containing n.
The authors state that consequently the following equation must also hold

1= =—
m 2n
dé P d)
8 (2 V(2) (1.2
[0}
and that finally
2n
G 0 2n-m
ar .y [d8 (%0
acts) {dt ("g) } (11.24)

Here o is the initial value of the nominal bending stress due to P. These equations are the basis of the
corte1§ting parameter used in figure 17.

Rice et al (79) have analysed stresses and strains at the tip of a growing crack on the basis of
Prandtl's slip line field theory. They present the formula

§ =

(11.25)
r 9

o
J+8 Eg %% 1n

&l
Qlﬁ
)=
L]

Here §_ is the COD at a distance r behind the crack tip. The constants a, B and R were determined by
comparison to results of a FEM analysis. It was found that
a = 0,65, 8 =5,08 and

a=o,25—37 (11.26)

‘%
Purushothaman and Tien (80) assume an Orowan-Irwin elastic stress distribution at the crack tip. They

take it that for any line element dx in front of the crack tip there will be a rupture time tR(x)
determined by the local stress and that the crack propagation rate can be calculated as

E.Q_l (11.27)

de dtR at the crack tip

Rupture time is calculated from the empirical equation

. -a

tr = Brlépnin) (11.28)
and minimum creep rate from the phenomenological equation

. a(x)” “Q

emin BN{W} exp T (11.29)
The result is

28, % on an -aQ

da N 1- ~] K c

.9 2{ } exp ~—— (11.30)

dt anBR YEHO'S RT
Here p is the crack tip radius and Y is the function Y(a/w) from the relation

K=Y . o(a)?> (11.31)

It should be noted that the use of the debatable relation between rupture time and minimum creep rate is
not necessary since one can use a phenomenological equation directly relating rupture time to stress and
temperature.

Van Leeuwen (2, 3) has considered the diffusion of vacancies towards the crack tip and related the
chemical potential of a vacancy at the crack tip to the rate of energy dissipation G.
The result is

da_Da

dt R (11.32)

Here (Ct - Cw) is the differencebetween the vacancy concentrations at the crack tip and the crack wall

ol 2/3
cC ~¢C pR Y‘(pt + a) + G(a)Q

t W
= exp
Co kT

- exp E% (11.33)

C, is the vacancy concentration at infinity
p is numerically equal to the nominal tensile stress normal to a circular embedded crack with diameter 2a.
Y is the surface tension

Pe is the crack tip radius

R
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? is the atomic volume

D is the diffusion constant

R is the average distance between crack nuclei d
k is Boltzmann's constant ;
T is the absolute temperature 4
J. and J, are Bessel functions of the first kind S
x‘1 is the first root of the equation JI(X) =0

Henshall et al. (31) consider creep crack growth by vacancy diffusion using equations derived by Vitek
and by Speight and Beere respectively. © T
In the first case there is found o

4
da 0.516 A (K
—d-t-'—d—“—'(i) (11.34)
c '“‘h

Here

D 6. Qu
BB

A T (11.35)

is the coefficient of self diffusion for the grain boundary
is the width of the grain boundary

is the atomic volume

is the shear modulus

is Boltzmann's constant

is the absolute temperature

is the width of the crack

noo
]

A= X

(2]

In the second case there is found

n+2

ot }

da _0.63 ) 2 BkT

AR o 16 (11.36)
Dsyﬂ

Here n and B are constants from Norton's law and y is the surface tension.
12. DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

It has been found that linear elastic fracture mechanics can be applied sucessfully to the residual
strength of brittle materials, crack growth due to stress corrosion and crack growth due to fatigue. Even
then the stress intensity factor K is not the sole parameter determining residual strength or crack
propagation rate. The relationships are influenced by some additional geometric and environmental para-
meters. Therefore it is not realistic to expect that the growth rate of creep cracks will be determined by
one single fracture mechanics parameter.

With the methods to account for plasticity in residual strength problems a return is discernible from the
stress-oriented K-based approached to the energy-oriented approach based on G, R or J. Therefore it may be
expected that the crack growth rate under creep conditions will correlate well with a parameter directly
related to the dissipation of energy.

In the case that a stress-oriented approach is selected nevertheless, the redistribution of stresses
due to creep and stress relaxation has to be accounted for. The K factor then loses the greater part of
its relevance.

Notable is the erratic success of K, ¢ and Oref 35 2 correlating parameter for crack growth rate.

net
The expectation is not borme out that in the cases of nominally brittle materials or narrow intercrystalline

cracks the K-factor will do better than %net °F Tref* The specimen geometry plays an important role. If it

is such that lateral contraction at the crack tip is highly constrained, then the energy dissipated will
be spent much more on crack propagation than on plastic deformation and the crack propagation rate will
correlate fairly well with K. If correlation is bad, this means that the relation of da/dt with K or o
is inflvenced heavily by specimen shape or dimensions and the initial values of crack length or load.
Sometimes a better correlation is obtained by working with the relative crack length a/w or by incorpo-
ra*ing rupture time or load in the correlation parameter. These seem to be tricks that will work only under
limited conditions.
Because COD and COD rate are closely related to energy dissipation it can be expected that they will
correlate well with the crack propagation rate, it being understood the re-initiation of a crack will
probably occur at a critical value of § and that afterwards da/dt will correlate with d§/dt. In practice
this will be uf little use because of the lack of fast methods to calculate § and d&/dt for a crack in a
structur: ! element, with the aim to predict da/dt. Some use can be made nevertheless of the approximate
expressions for G, J and J* applicable to certain specimens and containing § and d§/dt.
A static quantity like K, o , Gor J seems to be better suited for predictive purposes than a dynamic

: gef
quantity such as dé6/dt or J*,
Coleman et al. (81) have been fairly successful in correlating the growth rate of creep cracks in pressure
vessels with K and ¢ .
It is remarkable tha?e%elatively few attempts have been made to correlate da/dt with J, and that much more
is expected from the dynamic parameter J*. It should be considered that in order to calculats J* one needs

net

values of creep rates and deformation rates and that these in their turn will be determined by static
quantities like o or J. Then, nobody challenges the fact that creep rate will be determined by a static 1
quantity like strd$f o. - @

It is recommended therefore to put more effort in attempts to correlate da/dt with J,
An interesting development is that attempts are already made to correlate the crack growth rate in high
temperature fatigue with J. (. idananda and Shahinian, 82). It is a fortunate fact that so many alternative N
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and fast methods are available to calculate J and J*, The extent of agreement in their results is
encouraging.
In addition it is felt that parameters like dJ/da, dé/da and even dJ*/da merit more attention.

The literature has shown that da/dt correlates rather well with J* although the specemen geometry still
seems to have some influence.
Riedel (83) and Riedel and Rice (84) define a creep zone in analogy with the plastic zone. Its boundary is
the locus of points where creep strain equals elastic strain. The creep zone grows with time.

Riedel and Rice state that at the start of the creep cracking process the creep zone will be small and that
then K will be determining. Lateron the creep zone will be relatively large and then J* will be determining.
The present author is rather opposed to a discontinuous approach like that. It is the demonstration of a
desire to keep on using the K-factor whenever possible and pushing it to or even beyond its limits of
applicability. It should be remembered that the K-factor strictly speaking is relevant only under the
conditions that

- the deformations are elastic
- the crack is not too small relative to typical dimensions of the cracked bcdy
- the problem is two-dimensional.
If these conditions are not fulfilled it is better to depart from the stress-oriented K-based approach and
to return to an energy-oriented approach based on parameters like J or J*.

If the conditions are fulfilled one can nevertheless take the energy-oriented aporoach since then K is

so closely related to G and J.

A very important complication in the application of fracture mechanics to creep cracks is that the
materials properties of the structures considered are influenced so heavily by processing (welding and heat
treatment) and by accumulated creep and high-temperature exposure (cavitation and ageing). Therefore, if
creep growth parameters are determined experimentally, this will have to be done on material that has
undergone a representative pre-treatment. Examples can be found in Siverns and Price (42, 85),

Neate and Siverms (20), Neate (22), Gooch (26, 27, 48), Gooch and King (86), Ritter and Formby (87),

Worswick and Pilkington (41, 52, 88), Christian et al. (59),

Finally it has to be noted that in the present review of the literature it has been assumed tacitly
that failure of a high-temperature structure is initiated by formation and growth of a single or dominant
crack. This will not always be the truth. Another failure mode consists of creep cavitation, i.e. the
formation of micro-pores at critical locations. These voids will grow by plastic deformation and/or
vacancy diffusion until the cross section has been weakened to such an extent that rupture occurs by over-
load. A critical review of the literature concerning void growth by vacancy diffusion has been given by
Van Leeuwen among others (2). A model to predict the residual strength of a material weakened by voids

has been developed by Scott et al. (89).

Relevant to this problem is the analysis by Van Elst (90) who considered an array of defects or cracks
rather than a single or dominant one. He has based his approach on an analysis by Koiter concerning a
linear periodic array of through cracks of size a and distance d leading to a representatitve stress
intensity factor

K = o(2d . tan % 203

(12.1)

where A = (a/d). A finite element analysis of a two dimensional array of parallel through crack, length a,
at mutual distances d, ~ d, =~ d has shown a similar tangent-like dependence of the effective K factor on
A = (a/d). This analygis i§8 now being extended to three-dimensional arrays.

13.
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TABLE 2

Results of the calculations by Goldman and Hutchinson

m= 1 m=1,5 m= 2 m=3 m=5 m=7T
JN = Ux/3+
o 3N = 2,0%
=0 I : n/3% |Jy = 1,255 1,378 1,508 1,6L48 1,765
crN ~ T
J = hn/3%
ANV = 5 o4
Naw
Iy = 4,23 4,97 5,46 6,02 7,08 8,15
A = 1,92 2,22 2,45 2,77 3,30 3,74
a_ /g9y = 1500 | 1,20 1,33 1,48 1,65 1,77
w Vo = 0,100 0,129 0,154 0,211 0,31k 0,k08
TNaw = 3 70 4,07 4,18 h,og 3,63 3,20
Ay = 1 ,68 1,82 1,87 1,8 1,69 1,47
Iy =145 | 5,9 7,07 9,30 14,58 22,06
A = 2,01 2,hL 2,87 3,73 5,76 8,60
a_q JﬂA = 0,855 1,10 1,26 1,46 1,69 1,81
W Vopy = 05197| 0,253 0,307 0,k05 0,572 0,681
e = 3,4k 3,83 3,98 3,92 3,46 2,94
B = 1551 1,58 1,61 1,57 1,37 1,15
Iy = 6,24 9,28 13,03 24,26 80,08 264,3
a A = 2,31 3,11 4,12 6,97 20, b1 62,80
&=1/2|5y, =0,586| 0,882 1,10 1,45 1.87 2.1
VerN = 0,396] © h93 0,580 0,719 0,887 0,959
Tyaw = 3512 3,28 3,26 3,03 2,50 2,06
AN:: = 1,15 1,10 1,03 0,872 0,638 0,491
Jy =10,92 | 20,73 37,28 119,2 1273,0 14040,0
A = 2,92 4,61 7,26 19,34 170,1 1749,0
a_ | = 0.321| 0,685 0,952 | 1,k5 2,03 2,27
w Vory = 0,597 0 ,726 0,821 0,932 0,992 0,999
TNaw = 2273 2,59 2,33 1,86 1,2k 0,857
Bygy = 05729 © ,576 0 hsh 0,302 0,116 0,107

#* Exact value
§ Extrapolated value

*b NA * “Aaw

Limit values for m - e are JNA w

Limit values for (m -1, 25 l) are: J 0, J

N

16T

3(n2-4)
= |.,0, for all values of =

AP AP Nl daehe avath s saen - sssee
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TABLE 3 —
Results of the analysis by Shih and Hutchinson } .l
, '.“j:'-jj
- ‘». “\
m= 1 m=1,5| m=2|m=3|m=5| m=7| m=10 s
2- —_—a
==0 |6] 1,0 1,03 1,02 1,01 1,005 | 1,00 1,00 W.{
8- 48 g,| 1,800 3,231 3,543 | L,00 4,518 | 4,761 | k4,861 ’
v gy| 3,532 | 3,867 | b,107 | hhek | b.Bo7 | koks | L 8ok \
g3 0,3h47 0,491 0,6L0 | © 9&9 1,537 { 2,048 | 2,630 ]
G| 1,0 1,022 1,010 1,ooh 1,031 1,069 | 1,114
2= 1/u|g,| 2,58 | 2,820 2,972 | 3,140 | 3,195 | 3,106 | 2,896 -0
v g,| 3,116 | 3,235 3,286 | 3,304 | 3,151 | 2,926 | 2,595 .
g5 0,611 0,820 1,010 | 1,352 | 1,830 | 2,083| 2,191 .
G’ 1,0 1,014 1,00k | 1,008 [ 1,037 | 1,059 1,072
% = 1/2|g,| 2,211 2,242 2,195 | 2,056 | 1,811 | 1,643 | 1,465 a——
g,| 2,382 | 2,182 2,003 | 1,703 | 1,307 | 1,084 0,892 - .
g 0,924 1,085 1,180 | 1,254 | 1,183 | 1,051 | 0,888 T
G7| 1,0 0,994 0,975 | 0,952 | 0,939 | 0,944 | 0,957
% = 3/blg,| 2,073 | 1,803 1,708 | 1,458 | 1,208 | 1,082 | 0,956 S
g5 1,611 1,215 0,970 | 0,685 | 0o,k52 | 0,361 0,292
g5] 0,933 | 0,886 0,802 | 0,642 | 0,450 | 0,361 | 0,292 .3
G¢°| 1,0 0,977 0,931 | 0,880 | 0,860 | 0,875| 0,895 :
2=1 6| 1,0 0,966 0,880 | 0,805 | 0,80 | 0,83 | 0,88 1
L
m+ 1 @4
J=g 2 n).daccaf1-2 E 1
Nw? 0o w/\P, o
m
- (2 P
)
a P s '.—":'.q
"cr'ga(?m)'{“o"(p_) } 0
a T ~. _.n
14 ;(n-1) -
G ,m =g ,m
1 _ + .& 1 l
E\w’ ‘m
z = 1,40 and ¢ = 3,85.
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TABLE 4 . p
Results of calculations by Kumar and Shih. The CT specimen in plane stress o

2|n 5 =7l n=10| n=13] n=16

n n

h 1,609 1,46k [ 1,284 1,060| 0,903]| 0,729 0,601| 0,511] 0,
1/4{n, [ 17,552 |12,0k2 [10,706 | 8,736 7,316 5,Thk| L, 629] 3,746] 2
h 9,670 | 7,996 | 7,205 | 5,944 | 5,000 3,945| 3,191| 2,591 2

3{n

n=1|n

s |
[]

1,2k9 { 1,047 [ 0,801 0,647 0,484 0,377| 0,28L| 0,220
12,410 8,203 | 6,538 | 4,563 3,Lku7| 2,4k2| 1,830 1,360 1,019
7,800 5,734 | 4,615 | 3,253 2,475 1,765| 1,330] 0,990 0,746

—_
-
-
N
\Nn
o

3/8

< o
il
[= e gie

w

1,398 1,084 | 0,901 | 0,686} 0,558 | 0,436| 0,356 0,298 0,238
5,673 | b,212| 2,801 2,123 | 1,571 1,2L45] 1,026 0,814
6,288 4,149 | 3,107 | 2,087} 1,590 1,181]| 0,938| 0,774{ 0,614

% |p
nN —

1/2

o g=giay
w
O
L J
N
N

1,274 1,031 ]0,87510,695| 0,593 | 0,494 | 0,423 0,370| 0,310
T,471] 4,483 | 3,347 2,367 1,923 1,539 1,292 1,116| 0,928
3,375 | 2,536 | 1,804} 1,468 1,176| 0,988]| 0,853| 0,710

oy

< |

5/8

o=
w o
\n
=
\O

1,234{ 0,977 ]0,833|0,683| 0,598 0,506 0,431 | 0,373{ 0,31k
6,252 3,780 {2,893 | 2,135| 1,775 | 1,437| 1,204 | 1,030| 0,857
L,767| 2,992 | 2,2k2 | 1,657 1,379 | 1,116 0,936 0,800 | 0,666

€ |
n

3/4

o =a=2
W =

1,133| 1,010 | 0,775 | 0,680 0,650 0,620 0,490 0,470} 0,420
5,288 3,536 | 2,412 1 1,905 | 1,734 1,592| 1,232| 1,166| 1,029
4,231 2,829 | 1,930 | 1,524 | 1,387 1,274] 0,985 0,933{ 0,82k

w N =

h = 0,6w

h1 = 0,275w 1y

D = 0,25w

d = 0,25w ] P
B = 0,5

B:
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TABLE 5
Results of calculations by Kumar and Shih, The CT specimen in plane strain C <
n=1{n=2{n=3n=5{n=7]{n=1|n=13| n=16] ..=20 S
h, | 2,227 2,048) 1,783 1,b75] 1,334 1,248 1,258 1,325| 1,566 -
% = 1/4 h, 17,883 12,481 (11,675 110,788 110,538 10,745 11,460 [12,570 {14,563 R
n: | 9,852| 8,506 8,170 7,774| 7,706 | 7,9%2( 8,517| 9,371|10,887 -
a h, 2,148 1,716 1,392] 0,970 0,693 0,443| 0,276| 0,176 | 0,098 S
5= 3/8 h, 12,644} 8,176) 6,521 4,319] 2,970| 1,794 1,102| 0,686 | 0,370 Ve
hy | 7,94k} 5,760 4,643 3,103] 2,139 1,292 0,793| 0,49k | 0,266 PO
a h, | 1,935] 1,509 1,242/ 0,919| 0,685| 0,461| 0,314} 0,216 0,132 *fﬁh
= V/2in, | 9,321 5,846 | 4, 30k{ 2,747| 1,912} 1,199 0,788 0,530 0,317 T
h3 6,406 | 4,268 3,157 | 2,024| 1,413| 0,888] 0,585 0,393| 0,236 i
a h, 1,763 1,449 1,237] 0,974 0,752 0,602| 0,459 0,347 | 0,248 IR
o = 5/8 h, 7,612 4,572 3,423] 2,359| 1,810 1,319{ 0,983 0,749 | 0,485 R
hy | 5,521 3,431 2,583 1,787| 1,373| 1,000| 0,746 0,568 0,368 R
. n, | 1,709} 1,k24) 1,263) 1,033) 0,86k | 0,717| 0,575 | 0,4k8| 0,345 -
= 3/h h, 6,370 3,948] 3,179 2,337| 1,876 1,441 1,124 0,887 0,665 S
hy 4,857 ] 3,048 2,k56| 1,807 1,450) 1,114] 0,869] 0,686| 0,514 R
a h, | 1,568 1,450] 1,350 1,180 1,080} 0,950} 0,850 0,730 0,630 ’ ﬁ
el h, | 5,388 3,738/ 3,093} 2,433] 2,121 1,795] 1,573| 1,333} 1,136 .
h3 4,310 2,990 2,474 1,946 1,697 1,436 1,258 1,066{ 0,909 S
nt
J* = h1(%,n){sooéob(%%) } o
—y
n
= o [ - '8_, L] l c. -
- & =, w’n>{8€o P ) o
e 0 ,
. n -
- =h (2 ¢ of B _
; er ™3 w’“){“o Po) -
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10 Test results by Ellison and Walton (19) for single edge notch flat specimens
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Fig. 26 Correlation of da/dt with o,,, and J® for tests on CNC-M specimens at various stress levels
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plots), on CNP specimens of several sizes at one stress level (lower plots). Taira et al. (58)




e e Aty i c AL SCMIE S et SOV LA SO R AR
50 o]
i B
Oer (MPa) K (MPa.m?) y
20 60 100 20 50 100 1
T T T Y T 3
20 120 —d
23
- o
19 5
410 <410 :
45 15 5
3 3
€ E
E T £
. o
-1 1 11
7
405 405
-0.3 410.3
Onet K
—8-0,0¢ for all-thickness CT specimens —aK for all-thickness CT specimens.

(data points are shown only for 5.6 mm thick specimens).

J* (MJ/m2—h)

0.002 0.005 0.010 0.050 0.100
' ! ' ! ! | NUMBERS REFER TO SPECIMEN THICKNESS
20 IN 32nds INCH.
7/32" = 6 mm
-10 11/32" = 9 mm
15/32" =12 mm
19/32' =15 mm
4s 23/32" =18 mm
£
13
E
S

Hos -

o3 .

g -‘f’.f '

o
~#&J* for all-thickness CT specimens Che

(data points are shown only for 5.6 mm thick specimens).

Fig. 27 Test results by Donath, Nicholas and Fu (60) showing good correlation of da/dt with Thet? K and J°*
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to topics such as the residual strength of brittle materials, and crack growth due to
stress corrosion and to fatigue; the difficulties in accounting for plastic behaviour are
considered. A survey is made of attempts to correlate crack growth rate under creep
conditions with various parameters; alternative methods of calculating the contour
integrals J and J* are reviewed. A survey of theoretical crack growth rates, as functions
of parameters which are considered to be determining, is also included. The paper ends
with a discussion and some conclusions.
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